JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.

Small 2018 September
The ever-growing overlap between stretchable electronic devices and wearable healthcare applications is igniting the discovery of novel biocompatible and skin-like materials for human-friendly stretchable electronics fabrication. Amongst all potential candidates, hydrogels with excellent biocompatibility and mechanical features close to human tissues are constituting a promising troop for realizing healthcare-oriented electronic functionalities. In this work, based on biocompatible and stretchable hydrogels, a simple paradigm to prototype stretchable electronics with an embedded three-dimensional (3D) helical conductive layout is proposed. Thanks to the 3D helical structure, the hydrogel electronics present satisfactory mechanical and electrical robustness under stretch. In addition, reusability of stretchable electronics is realized with the proposed scenario benefiting from the swelling property of hydrogel. Although losing water would induce structure shrinkage of the hydrogel network and further undermine the function of hydrogel in various applications, the worn-out hydrogel electronics can be reused by simply casting it in water. Through such a rehydration procedure, the dehydrated hydrogel can absorb water from the surrounding and then the hydrogel electronics can achieve resilience in mechanical stretchability and electronic functionality. Also, the ability to reflect pressure and strain changes has revealed the hydrogel electronics to be promising for advanced wearable sensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app