Add like
Add dislike
Add to saved papers

1.7 micron optical coherence tomography for vaginal tissue characterization in vivo.

OBJECTIVES: Optical coherence tomography (OCT) can noninvasively visualize in vivo tissue microstructure with high spatial resolution that approaches the histologic level. Currently, OCT studies in gynecology are few and limited to a conventional 1.3 μm center wavelength swept light source which provides high spatial resolution but limited penetration depth. Here, we present a novel endoscopic OCT system with improved penetration depth and high resolution.

METHODS: A novel endoscopic OCT system was developed based on a 1.7 µm swept source laser, which is capable of deeper tissue penetration due to its longer wavelength. To evaluate the performance of system, we imaged the human vaginas in vivo with both conventional 1.3 and 1.7 μm endoscopic OCT systems.

RESULTS: With the 1.7 μm endoscopic OCT system, imaging depth was improved by more than 25%, allowing better visualization of the lamina propria and clear contrast of the epithelial layer from the surrounding tissues.

CONCLUSION: The significantly improved performance of the novel 1.7 μm OCT imaging system demonstrates its potential use as a minimally-invasive monitoring tool of vaginal health in gynecologic practice. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app