Add like
Add dislike
Add to saved papers

Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma.

Cancer Medicine 2018 September
Monocarboxylate transporter-4 (MCT4), a monocarboxylic acid transporter, demonstrates significantly increased expression in the majority of malignancies. We performed an experiment using BALB/C mice, and our results showed that ShMCT4 transfection or the pharmaceutic inhibition of MCT4 with 7acc1 strengthens the activity of NK cells. The results of a calcein assay revealed that the cytotoxicity of NK cells was strengthened via inhibition of MCT4. In addition, ELISA testing showed that the content of perforin and CD107a was increased, and PCR amplification and immunoblotting revealed that the expression of NKG2D and H60 was upregulated after the inhibition of MCT4. Further, we observed an elevated pH value, decreased extracellular lactate flow, and attenuated tumor growth. Therefore, we concluded that the inhibition of MCT4 enhanced the cytotoxicity of NK cells by blocking lactate flux and reversing the acidified tumor microenvironment. In addition to these findings, we also discovered that MCT4 depletion may have a pronounced impact on autophagy, which was surmised by observing that the inhibition of autophagy (3MA) pulled the enhanced cytotoxicity of NK cells downwards. Together, these data suggest that the key effect of MCT4 depletion on NK cells probably utilizes inductive autophagy as a compensatory metabolic mechanism to minimize the acidic extracellular microenvironment associated with lactate export in tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app