JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases.

The B-family polymerases of hyperthermophilic archaea have proven an exceptional platform for engineering polymerases with extended substrate spectra, despite multiple mechanisms for detecting and avoiding incorporation of non-cognate substrates. These polymerases can efficiently synthesize and reverse-transcribe a number of xenonucleic acids (XNAs) that differ significantly from the canonical B-form of DNA. We present here a protocol for hexitol nucleic acid (HNA) synthesis by an engineered Thermococcus gorgonarius polymerase variant, including adaptation for large-scale synthesis and purification, and for other XNAs. We describe XNA purification and reverse transcription (with a previously reported XNA RT also based on Thermococcus gorgonarius), as well as key considerations for the characterization and optimization of XNA reactions. © 2018 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app