Add like
Add dislike
Add to saved papers

Maximal strength training increases muscle force generating capacity and the anaerobic ATP synthesis flux without altering the cost of contraction in elderly.

Aging is associated with a progressive decline in skeletal muscle function, then leading to impaired exercise tolerance. Maximal strength training (MST) appears to be a practical and effective intervention to increase both exercise capacity and efficiency. However, the underlying physiological mechanisms responsible for these functional improvements are still unclear. Accordingly, the purpose of this study was to examine the intramuscular and metabolic adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older individuals (75 ± 9 yrs) by employing a combination of molecular, magnetic resonance 1 H-imaging and 31 P-spectroscopy, muscle biopsies, motor nerve stimulation, and indirect calorimetry techniques. Dynamic and isometric muscle strength were both significantly increased by MST. The greater torque-time integral during sustained isometric maximal contraction post-MST (P = 0.002) was associated with increased rates of ATP synthesis from anaerobic glycolysis (PRE: 10 ± 7 mM·min-1 ; POST: 14 ± 7 mM·min-1 , P = 0.02) and creatine kinase reaction (PRE: 31 ± 10 mM·min-1 ; POST: 41 ± 10 mM·min-1 , P = 0.006) such that the ATP cost of contraction was not significantly altered. Expression of fast myosin heavy chain, quadriceps muscle volume, and submaximal cycling net efficiency were also increased with MST (P = 0.005; P = 0.03 and P = 0.03, respectively). Overall, MST induced a shift toward a more glycolytic muscle phenotype allowing for greater muscle force production during sustained maximal contraction. Consequently, some of the MST-induced improvements in exercise tolerance might stem from a greater anaerobic capacity to generate ATP, while the improvement in exercise efficiency appears to be independent from an alteration in the ATP cost of contraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app