Add like
Add dislike
Add to saved papers

Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats.

In this study, we used an experimental model of congenital hypothyroidism to show that deficient thyroid hormones (TH) disrupt different neurochemical, morphological and functional aspects in the cerebral cortex of 15-day-old offspring. Our results showing decreased glutamine synthetase (GS) activity and Ca2+ overload in the cerebral cortex of hypothyroid pups suggest misregulated glutamate metabolism associated with developmentally induced TH deficiency. The 14 C-MeAIB accumulation indicates upregulated System A activity and glutamine uptake by neurons. Energy metabolism in hypothyroid cortical slices was preserved, as demonstrated by unaltered glucose metabolism. We also found upregulated acetylcholinesterase activity, depleting acetylcholine from the synaptic cleft, pointing to disrupted cholinergic system. Increased reactive oxygen species (ROS) generation, lipid peroxidation, glutathione (GSH) depletion, which were associated with glutathione peroxidase, superoxide dismutase and gamma-glutamyltransferase downregulation suggest redox imbalance. Disrupted astrocyte cytoskeleton was evidenced by downregulated and hyperphosphorylated glial fibrillary acidic protein (GFAP). Morphological and structural characterization of the sensorimotor cerebral cortex (SCC) showed unaltered thickness of the SCC. However, decreased size of neurons on the layers II & III and IV in the right SCC and increased NeuN positive neurons in specific SCC layers, suggest that they are differently affected by the low TH levels during neurodevelopment. Hypothyroid pups presented increased number of foot-faults in the gridwalk test indicating affected motor functions. Taken together, our results show that congenital hypothyroidism disrupts glutamatergic and cholinergic neurotransmission, Ca2+ equilibrium, redox balance, cytoskeleton integrity, morphological and functional aspects in the cerebral cortex of young rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app