Add like
Add dislike
Add to saved papers

Magnetic solid-phase extraction for the removal of mercury from water with ternary hydrosulphonyl-based deep eutectic solvent modified magnetic graphene oxide.

Talanta 2018 October 2
A novel ternary hydrosulphonyl-based deep eutectic solvent (THS-DES) comprised of choline chloride/itaconic acid/3-mercaptopropionic acid (molar ratio 2:1:1) was firstly synthesized. The composition, property and microscopic structure of the new magnetic adsorbent (THS-DES@M-GO) based on the THS-DES modified the magnetic graphene oxide (M-GO) was characterized by the system. Magnetic solid-phase extraction (MSPE) based THS-DES@M-GO was firstly researched for the removal of mercury (Hg2+ ) from water. Various influencing factors such as the mass of adsorbent, solution pH, initial Hg2+ concentration, the removal time and temperature had been systematically tested. Under optimized conditions the removal efficiency (R%) could achieved 99.91%. The precision, repeatability and stability experiments were investigated in detail to evaluate the presented method. The relative standard deviations (RSD) of the removal efficiency were 0.053%, 1.49% and 1.55%, respectively. The maximum adsorption capacity (Qmax ) was 215.1 mg g-1 and the data of the experiment fitted well with Langmuir model. Elution experimental studies shown that 94.94% of Hg2+ could be eluted by ethylenediaminetetraacetic acid (EDTA). After seven cycles of adsorption-desorption processes, the THS-DES@M-GO still retained a high removal efficiency of 90.23%. Compared with other adsorbents prepared in this work, THS-DES@M-GO displayed higher removal efficiency for Hg2+ . Interference study proved the composites was tolerated and stabled under the complex matrix. What's more, the analysis of mercury contaminated water (from Guizhou, P.R., China) proved that the proposed method could be used to remove Hg2+ in practical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app