Add like
Add dislike
Add to saved papers

Proliferation, migration and differentiation potential of human mesenchymal progenitor cells derived from osteoarthritic subchondral cancellous bone.

Background: For regenerative therapies in the orthopedic field, one prerequisite for therapeutic success in the treatment of cartilage defects is the potential of body's own cells to migrate, proliferate and differentiate into functional cells. While this has been demonstrated for mesenchymal stem and progenitor cells (MPC) from healthy tissue sources, the potential of cells from degenerative conditions is unclear. In this study the regenerative potential of MPC derived from subchondral cancellous bone with diagnosed osteoarthritis is evaluated in vitro . Methods: OaMPC isolated from bone chips of three individual patients with Kellgren grade 3 osteoarthritis were characterized by analysis of cell surface antigen pattern. Cell proliferation was evaluated by doubling time and population doubling rate. Cell migration was assessed using a multi-well migration assay. Multi-lineage potential was evaluated by histological staining of adipogenic, osteogenic and chondrogenic markers. In addition, chondrogenic differentiation was verified by qPCR. Results: OaMPC showed a stable proliferation and a typical surface antigen pattern known from mesenchymal stem cells. Cell migration of oaMPC can be induced by human blood serum. OaMPC were capable of adipogenic, osteogenic and chondrogenic differentiation comparable to MPC derived from healthy conditions. Conclusion: OaMPC derived from knee joints affected by osteoarthritic conditions showed regeneration potential regarding migration, proliferation and chondrogenic differentiation. This suggests that oaMPC are able to contribute to cartilage repair tissue formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app