JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Spinal interneuronal mechanisms underlying pudendal and tibial neuromodulation of bladder function in cats.

This study examined the mechanisms underlying pudendal and tibial neuromodulation of bladder function at the single neuron level in the spinal cord. A microelectrode was inserted into the S2 spinal cord of anesthetized cats to record single neuron activity induced by bladder distention over a range of constant intravesical pressures (10-40 cmH2 O). Pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS) was applied at 5 Hz frequency and 0.2 ms pulse width and at multiples of the threshold (T) intensities for inducing anal or toe twitches. A total of 14 spinal neurons from 11 cats were investigated. Both PNS and TNS at 2 T intensity significantly (p < .05) reduced by 40-50% the frequency of firing induced by bladder distention at 20-40 cmH2 O in the same spinal neurons. This reduction was not changed by blocking opioid receptors with naloxone (1 mg/kg, i.v.). Activation of pudendal afferents by repeatedly stroking (3-5 times per second) the genital skin using a cotton swab also inhibited the neuron activity induced by bladder distention. Prolonged (30 min) TNS at 4 T intensity produced a short lasting (10-18 min) post-stimulation inhibition that reduced by 40-50% bladder-related neuron activity at different bladder pressures. These results indicate that PNS and TNS inhibition of reflex bladder activity may be mediated in part by convergence of inhibitory inputs onto the same population of bladder-related interneurons in laminae V-VII of the S2 spinal cord and that an opioid receptor mechanism is not involved in the inhibition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app