Read by QxMD icon Read

Dopant-induced electron localization drives CO 2 reduction to C 2 hydrocarbons

Yansong Zhou, Fanglin Che, Min Liu, Chengqin Zou, Zhiqin Liang, Phil De Luna, Haifeng Yuan, Jun Li, Zhiqiang Wang, Haipeng Xie, Hongmei Li, Peining Chen, Eva Bladt, Rafael Quintero-Bermudez, Tsun-Kong Sham, Sara Bals, Johan Hofkens, David Sinton, Gang Chen, Edward H Sargent
Nature Chemistry 2018, 10 (9): 974-980
The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C2 products. Here, we use boron to tune the ratio of Cuδ+ to Cu0 active sites and improve both stability and C2 -product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C2 products. We report experimentally a C2 Faradaic efficiency of 79 ± 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of ~40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.


You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"