Add like
Add dislike
Add to saved papers

The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling.

Long noncoding RNAs (lncRNAs) participate in multiple diverse diseases, including osteoarthritis (OA). Here, we explored the role of lncRNA XIST in OA and identified the potential molecular mechanisms. The expression of XIST in cartilage samples in patients with OA was significantly upregulated. XIST knockdown remarkably suppressed IL-1β-suppressed OA chondrocyte proliferation while promoted IL-1β-induced cell apoptosis. By employing online tools, miRNAs related to CXCR4, a major contributor to chondrocyte apoptosis, and XIST were selected. miR-211 expression could be significantly inhibited by IL-1β stimulation, and miR-211 negatively regulated XIST expression and CXCR4 protein levels. Through direct binding, XIST served as a ceRNA for miR-211 to counteract miR-211-mediated CXCR4 repression, thereby modulating chondrocyte proliferation and apoptosis through downstream MAPK signaling. In OA tissues, miR-211 expression was significantly downregulated while CXCR4 mRNA expression was upregulated. miR-211 was negatively correlated with XIST and CXCR4, respectively, while XIST and CXCR4 was positively correlated in tissue samples. In conclusion, the study revealed that lncRNA XIST can promote the proliferation of OA chondrocytes and promote apoptosis through the miR-211/CXCR4 axis. Thus, lncRNA XIST might be considered as a potential therapeutic target for OA treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app