Add like
Add dislike
Add to saved papers

MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development.

Plant Physiology 2018 September
Stomata on the plant epidermis control gas and water exchange and are formed by MAPK-dependent processes. Although the contribution of MAP KINASE3 (MPK3) and MPK6 (MPK3/MPK6) to the control of stomatal patterning and differentiation in Arabidopsis ( Arabidopsis thaliana ) has been examined extensively, how they are inactivated and regulate distinct stages of stomatal development is unknown. Here, we identify a dual-specificity phosphatase, MAP KINASE PHOSPHATASE1 (MKP1), which promotes stomatal cell fate transition by controlling MAPK activation at the early stage of stomatal development. Loss of function of MKP1 creates clusters of small cells that fail to differentiate into stomata, resulting in the formation of patches of pavement cells. We show that MKP1 acts downstream of YODA (a MAPK kinase kinase) but upstream of MPK3/MPK6 in the stomatal signaling pathway and that MKP1 deficiency causes stomatal signal-induced MAPK hyperactivation in vivo. By expressing MKP1 in the three discrete cell types of stomatal lineage, we further identified that MKP1-mediated deactivation of MAPKs in early stomatal precursor cells directs cell fate transition leading to stomatal differentiation. Together, our data reveal the important role of MKP1 in controlling MAPK signaling specificity and cell fate decision during stomatal development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app