Add like
Add dislike
Add to saved papers

Long-lived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue.

Nanoscale 2018 August 8
Boron (B) and phosphorus (P) codoped silicon quantum dots (Si QDs) are dispersible in polar solvents without organic ligands and exhibit photoluminescence (PL) in the first (NIR-I) and second (NIR-II) near infrared (NIR) windows in biological tissues due to the optical transition from the donor to acceptor states. We studied the relationship between the PL wavelength, lifetime and quantum yield (QY) of the colloidal solution and the composition of the starting material for the preparation. We found that the PL lifetime and the QY are primarily determined by the composition, while the PL wavelength is mainly determined by the growth temperature. By optimizing the composition, we achieved QYs of 20.1% and 1.74% in the NIR-I and NIR-II regions, respectively, in methanol. We demonstrate the application for time-gated imaging in the NIR-II range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app