Add like
Add dislike
Add to saved papers

Reducing Complexity of HEVC: A Deep Learning Approach.

High Efficiency Video Coding (HEVC) significantly reduces bit-rates over the preceding H.264 standard but at the expense of extremely high encoding complexity. In HEVC, the quad-tree partition of coding unit (CU) consumes a large proportion of the HEVC encoding complexity, due to the brute-force search for rate-distortion optimization (RDO). Therefore, this paper proposes a deep learning approach to predict the CU partition for reducing the HEVC complexity at both intra-and inter-modes, which is based on convolutional neural network (CNN) and long-and short-term memory (LSTM) network. First, we establish a large-scale database including substantial CU partition data for HEVC intra-and inter-modes. This enables deep learning on the CU partition. Second, we represent the CU partition of an entire coding tree unit (CTU) in the form of a hierarchical CU partition map (HCPM). Then, we propose an early-terminated hierarchical CNN (ETH-CNN) for learning to predict the HCPM. Consequently, the encoding complexity of intra-mode HEVC can be drastically reduced by replacing the brute-force search with ETH-CNN to decide the CU partition. Third, an early-terminated hierarchical LSTM (ETH-LSTM) is proposed to learn the temporal correlation of the CU partition. Then, we combine ETH-LSTM and ETH-CNN to predict the CU partition for reducing the HEVC complexity at inter-mode. Finally, experimental results show that our approach outperforms other state-of-the-art approaches in reducing the HEVC complexity at both intra-and inter-modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app