Add like
Add dislike
Add to saved papers

Complex Formation in a Liquid-Liquid Extraction System Containing Vanadium(IV/V), 2,3-Dihydroxynaphtahlene and Thiazolyl Blue.

Liquid-liquid extraction systems for VIV/V containing 2,3-dihydroxynaphtahlene (DN) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (thiazolyl blue, MTT) were studied. The optimum conditions for VIV and VV extraction were found. VIV is extracted in chloroform as a 1:2:2 complex (V:DN:MTT) with lmax = 570 nm and e570 = 2.9´104 dm3 mol-1 cm-1. However, this wavelength was found unsuitable for precise spectrophotometric measurements due to time dependent absorbance changes. VV forms predominantly a 1:1:1 complex with lmax = 335 nm. The calibration graph for this oxidation state is linear in the range of 0.06-1.5 mg cm-3. The molar absorptivity, Sandell's sensitivity and limit of detection were calculated to be 1.6 ´ 104 dm3 mol-1 cm-1, 3.2 ng cm-2 and 0.02 mg cm-3, respectively. The ground-state equilibrium geometries of the anionic parts of the extracted ion-associates, [VIVO(DN2-)2]2-and [VVO2(DN2-)]-, were optimized at the BLYP/6-31++G* level of theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app