Add like
Add dislike
Add to saved papers

Novel Mutations in TACSTD2 Gene in Families with Gelatinous Drop-like Corneal Dystrophy (GDLD).

In the current study, we conducted a mutation screening of tumor-associated calcium signal transducer 2 ( TACSTD2 ) gene in six consanguineous Iranian families with gelatinous drop-like corneal dystrophy (GDLD), in order to find the causative mutations. Detailed eye examination was performed by ophthalmologist to confirm GDLD in patients. To detect the possible mutations, direct Sanger sequencing was performed for the only exon of TACSTD2 gene, and its boundary regions in all patients. In the patients with GDLD, the corneal surface showed lesions with different shapes from mild to severe forms depending on the progress of the disease. The patients showed grayish corneal deposits as a typical mulberry form, corneal dystrophy along with corneal lipid deposition, and vascularization. Targeted Sanger sequencing in TACSTD2 gene revealed the causative mutations in this gene in all studied families. Our study expanded the mutational spectrum of TACSTD2 which along with the related symptoms could help with the diagnosis, and management of the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app