Add like
Add dislike
Add to saved papers

Short-term transcriptome and microRNAs responses to exposure to different air pollutants in two population studies.

Diesel vehicle emissions are the major source of genotoxic compounds in ambient air from urban areas. These pollutants are linked to risks of cardiovascular diseases, lung cancer, respiratory infections and adverse neurological effects. Biological events associated with exposure to some air pollutants are widely unknown but applying omics techniques may help to identify the molecular processes that link exposure to disease risk. Most data on health risks are related to long-term exposure, so the aim of this study is to investigate the impact of short-term exposure (two hours) to air pollutants on the blood transcriptome and microRNA expression levels. We analyzed transcriptomics and microRNA expression using microarray technology on blood samples from volunteers participating in studies in London, the Oxford Street cohort, and, in Barcelona, the TAPAS cohort. Personal exposure levels measurements of particulate matter (PM10 , PM2.5 ), ultrafine particles (UFPC), nitrogen oxides (NO2 , NO and NOx), black carbon (BC) and carbon oxides (CO and CO2 ) were registered for each volunteer. Associations between air pollutant levels and gene/microRNA expression were evaluated using multivariate normal models (MVN). MVN-models identified compound-specific expression of blood cell genes and microRNAs associated with air pollution despite the low exposure levels, the short exposure periods and the relatively small-sized cohorts. Hsa-miR-197-3p, hsa-miR-29a-3p, hsa-miR-15a-5p, hsa-miR-16-5p and hsa-miR-92a-3p are found significantly expressed in association with exposures. These microRNAs target also relevant transcripts, indicating their potential relevance in the research of omics-biomarkers responding to air pollution. Furthermore, these microRNAs are also known to be associated with diseases previously linked to air pollution exposure including several cancers such lung cancer and Alzheimer's disease. In conclusion, we identified in this study promising compound-specific mRNA and microRNA biomarkers after two hours of exposure to low levels of air pollutants during two hours that suggest increased cancer risks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app