Add like
Add dislike
Add to saved papers

Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Cells.

Endothelial cells (ECs) line the interior surface of blood and lymphatic vessels, and play a key role in a variety of physiological or pathological processes such as thrombosis, inflammation, or vascular wall remodeling. Human-induced pluripotent stem cell (iPSCs)-derived ECs provide a new opportunity for vascular regeneration and serve as a model to study the mechanism and to screen for novel therapies. We use developmental cues in a monolayer differentiation approach to efficiently generate mesoderm cells from iPSCs via small-molecule activation of WNT signaling in chemically defined medium for 4 days, and subsequent EC specification using vascular endothelial growth factor and fibroblast growth factor for another 4 days. After 8 days of differentiation, mature ECs are further purified using magnetic-activated cell sorting for the EC surface marker CD144. These ECs exhibit molecular and cellular characteristics consistent with native ECs, such as expression of specific surface markers, formation of tube-like structures and acetylated low-density lipoprotein uptake. © 2018 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app