Add like
Add dislike
Add to saved papers

Predictive performance of six mortality risk scores and the development of a novel model in a prospective cohort of patients undergoing valve surgery secondary to rheumatic fever.

BACKGROUND: Mortality prediction after cardiac procedures is an essential tool in clinical decision making. Although rheumatic cardiac disease remains a major cause of heart surgery in the world no previous study validated risk scores in a sample exclusively with this condition.

OBJECTIVES: Develop a novel predictive model focused on mortality prediction among patients undergoing cardiac surgery secondary to rheumatic valve conditions.

METHODS: We conducted prospective consecutive all-comers patients with rheumatic heart disease (RHD) referred for surgical treatment of valve disease between May 2010 and July of 2015. Risk scores for hospital mortality were calculated using the 2000 Bernstein-Parsonnet, EuroSCORE II, InsCor, AmblerSCORE, GuaragnaSCORE, and the New York SCORE. In addition, we developed the rheumatic heart valve surgery score (RheSCORE).

RESULTS: A total of 2,919 RHD patients underwent heart valve surgery. After evaluating 13 different models, the top performing areas under the curve were achieved using Random Forest (0.982) and Neural Network (0.952). Most influential predictors across all models included left atrium size, high creatinine values, a tricuspid procedure, reoperation and pulmonary hypertension. Areas under the curve for previously developed scores were all below the performance for the RheSCORE model: 2000 Bernstein-Parsonnet (0.876), EuroSCORE II (0.857), InsCor (0.835), Ambler (0.831), Guaragna (0.816) and the New York score (0.834). A web application is presented where researchers and providers can calculate predicted mortality based on the RheSCORE.

CONCLUSIONS: The RheSCORE model outperformed pre-existing scores in a sample of patients with rheumatic cardiac disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app