Add like
Add dislike
Add to saved papers

A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions.

Scientific Reports 2018 July 3
Bacterial global post-transcriptional regulators execute hundreds of interactions with targets that display varying molecular features while retaining specificity. Herein, we develop, validate, and apply a biophysical, statistical thermodynamic model of canonical target mRNA interactions with the CsrA global post-transcriptional regulator to understand the molecular features that contribute to target regulation. Altogether, we model interactions of CsrA with a pool of 236 mRNA: 107 are experimentally regulated by CsrA and 129 are suspected interaction partners. Guided by current understanding of CsrA-mRNA interactions, we incorporate (i) mRNA nucleotide sequence, (ii) cooperativity of CsrA-mRNA binding, and (iii) minimization of mRNA structural changes to identify an ensemble of likely binding sites and their free energies. The regulatory impact of bound CsrA on mRNA translation is determined with the RBS calculator. Predicted regulation of 66 experimentally regulated mRNAs adheres to the principles of canonical CsrA-mRNA interactions; the remainder implies that other, diverse mechanisms may underlie CsrA-mRNA interaction and regulation. Importantly, results suggest that this global regulator may bind targets in multiple conformations, via flexible stretches of overlapping predicted binding sites. This novel observation expands the notion that CsrA always binds to its targets at specific consensus sequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app