Add like
Add dislike
Add to saved papers

Establishment and characterization of a canine keratinocyte organoid culture system.

BACKGROUND: Perturbations of epidermal and follicular homeostasis have been attributed to a variety of skin diseases affecting dogs. The availability of an in vitro system to investigate these diseases is important to understand underlying pathomechanisms.

OBJECTIVES: To establish an accurate and reliable in vitro 3D system of canine keratinocyte organoids to lay the basis for studying functional defects in interfollicular epidermis (IFE) and hair follicle (HF) morphogenesis, reconstitution and differentiation that lead to alopecic and epidermal diseases.

ANIMALS: Skin biopsies were obtained from freshly euthanized dogs of different breeds with no skin abnormalities.

METHODS: Cells derived from microdissected IFE and HFs were seeded in Matrigel and keratinocyte organoids were grown and characterized using immunohistochemistry, RT-qPCR and RNA sequencing.

RESULTS: Both organoid lines develop into a basal IFE-like cell type. Gene and protein expression analysis revealed high mRNA and protein levels of keratins 5 and 14, IFE differentiation markers and intercellular molecules. Key markers of HF stem cells were lacking. Withdrawal of growth factors resulted in upregulation of markers such as KRT16, Involucrin, KRT17 and SOX9, showing the potential of the organoids to develop towards more differentiated tissue.

CONCLUSION AND CLINICAL IMPORTANCE: Our 3D in vitro culture system provides the basis to explore epidermal function, to investigate the culture conditions necessary for the development of organoids with a HF signature and to address cutaneous disorders in dogs. However, for induction of HF signatures or hair growth, addition of different growth factors or co-culture with dermal papilla will be required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app