Add like
Add dislike
Add to saved papers

An evaluation of common methods for dichotomization of continuous variables to discriminate disease status.

Dichotomization of continuous variables to discriminate a dichotomous outcome is often useful in statistical applications. If a true threshold for a continuous variable exists, the challenge is identifying it. This paper examines common methods for dichotomization to identify which ones recover a true threshold. We provide mathematical and numeric proofs demonstrating that maximizing the odds ratio, Youden's statistic, Gini Index, chi-square statistic, relative risk and kappa statistic all theoretically recover a true threshold. A simulation study evaluating the ability of these statistics to recover a threshold when sampling from a population indicates that maximizing the chi-square statistic and Gini Index have the smallest bias and variability when the probability of being larger than the threshold is small while maximizing Kappa or Youden's statistics is best when this probability is larger. Maximizing odds ratio is the most variable and biased of the methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app