Add like
Add dislike
Add to saved papers

Immobilization of Photo-Immunoconjugates on Nanoparticles Leads to Enhanced Light-Activated Biological Effects.

Small 2018 July 2
The past three decades have witnessed notable advances in establishing photosensitizer-antibody photo-immunoconjugates for photo-immunotherapy and imaging of tumors. Photo-immunotherapy minimizes damage to surrounding healthy tissue when using a cancer-selective photo-immunoconjugate, but requires a threshold intracellular photosensitizer concentration to be effective. Delivery of immunoconjugates to the target cells is often hindered by I) the low photosensitizer-to-antibody ratio of photo-immunoconjugates and II) the limited amount of target molecule presented on the cell surface. Here, a nanoengineering approach is introduced to overcome these obstacles and improve the effectiveness of photo-immunotherapy and imaging. Click chemistry coupling of benzoporphyrin derivative (BPD)-Cetuximab photo-immunoconjugates onto FKR560 dye-containing poly(lactic-co-glycolic acid) nanoparticles markedly enhances intracellular photo-immunoconjugate accumulation and potentiates light-activated photo-immunotoxicity in ovarian cancer and glioblastoma. It is further demonstrated that co-delivery and light activation of BPD and FKR560 allow longitudinal fluorescence tracking of photoimmunoconjugate and nanoparticle in cells. Using xenograft mouse models of epithelial ovarian cancer, intravenous injection of photo-immunoconjugated nanoparticles doubles intratumoral accumulation of photo-immunoconjugates, resulting in an enhanced photoimmunotherapy-mediated tumor volume reduction, compared to "standard" immunoconjugates. This generalizable "carrier effect" phenomenon is attributed to the successful incorporation of photo-immunoconjugates onto a nanoplatform, which modulates immunoconjugate delivery and improves treatment outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app