Add like
Add dislike
Add to saved papers

Comparing aryltetralin lignan accumulation patterns in four biotechnological systems of Linum album.

Linum album is a herbaceous plant with medical interest due to its content of podophyllotoxin (PTOX), an aryltetralin lignan with cytotoxic activity. Previous studies in our laboratory showed that cell suspension cultures of L. album produced more PTOX than methoxypodophyllotoxin (6-MPTOX), both lignans being formed from the same precursor after divergence close to the end of the biosynthetic pathway. In contrast, the hairy roots produced more 6-MPTOX than PTOX. Taking into account this variability, we were interested to know if the lignan profile of an in vitro PTOX-producing L. album plant changes according to the biotechnological system employed and, if so, if this is due to cell dedifferentiation and/or transformation events. With this aim, we established four biotechnological systems: (1) Wild type cell suspensions, (2) transformed cell suspensions, (3) adventitious roots and (4) hairy roots. We determined the production of four aryltetralin lignans: PTOX, 6-MPTOX, deoxypodophyllotoxin (dPTOX) and β-peltatin. The results show that in vitro plantlets, WT cells and transformed cells predominantly produced PTOX, production being 11-fold higher in the plantlets. Otherwise, the adventitious and hairy roots predominantly produced 6-MPTOX, the adventitious roots being the most productive, with MPTOX levels 1.58-fold higher than in transformed roots. We can infer from these results that in the studied plants, cell differentiation promoted the formation of 6-MPTOX over PTOX, while transformation did not influence the lignan pattern.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app