JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

More than fishing for a cure: The promises and pitfalls of high throughput cancer cell line screens.

High-throughput screens in cancer cell lines (CCLs) have been used for decades to help researchers identify compounds with the potential to improve the treatment of cancer and, more recently, to identify genomic susceptibilities in cancer via genome-wide shRNA and CRISPR/Cas9 screens. Additionally, rich genomic and transcriptomic data of these CCLs has allowed researchers to pair this screening data with biological features, enabling efforts to identify biomarkers of treatment response and gene dependencies. In this paper, we review the major CCL screening efforts and the large datasets these screens have made available. We also assess the CCL screens collectively and include a resource with harmonized CCL and compound identifiers to facilitate comparisons across screens. The CCLs in these screens were found to represent a wide range of cancer types, with a strong correlation between the representation of a cancer type and its associated mortality. Patient ages and gender distributions of CCLs were generally as expected, with some notable exceptions of female underrepresentation in certain disease types. Also, ethnicity information, while largely incomplete, suggests that African American and Hispanic patients may be severely underrepresented in these screens. Nearly all genes were targeted in the genetic perturbations screens, but the compounds used for the drug screens target less than half of known cancer drivers, likely reflecting known limitations in our drug design capabilities. Finally, we discuss recent developments in the field and the promise they hold for enabling future screens to overcome previous limitations and lead to new breakthroughs in cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app