Add like
Add dislike
Add to saved papers

Quantum-like behavior without quantum physics II. A quantum-like model of neural network dynamics.

In earlier work, we laid out the foundation for explaining the quantum-like behavior of neural systems in the basic kinematic case of clusters of neuron-like units. Here we extend this approach to networks and begin developing a dynamical theory for them. Our approach provides a novel mathematical foundation for neural dynamics and computation which abstracts away from lower-level biophysical details in favor of information-processing features of neural activity. The theory makes predictions concerning such pathologies as schizophrenia, dementias, and epilepsy, for which some evidence has accrued. It also suggests a model of memory retrieval mechanisms. As further proof of principle, we analyze certain energy-like eigenstates of the 13 three-neuron motif classes according to our theory and argue that their quantum-like superpositional nature has a bearing on their observed structural integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app