JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin.

Dihydroxamic acid macrocyclic siderophores comprise four members: putrebactin (putH2 ), avaroferrin (avaH2 ), bisucaberin (bisH2 ), and alcaligin (alcH2 ). This mini-review collates studies of the chemical biology and coordination chemistry of these macrocycles, with an emphasis on putH2 . These Fe(III)-binding macrocycles are produced by selected bacteria to acquire insoluble Fe(III) from the local environment. The macrocycles are optimally pre-configured for Fe(III) binding, as established from the X-ray crystal structure of dinuclear [Fe2 (alc)3 ] at neutral pH. The dimeric macrocycles are biosynthetic products of two endo-hydroxamic acid ligands flanked by one amine group and one carboxylic acid group, which are assembled from 1,4-diaminobutane and/or 1,5-diaminopentane as initial substrates. The biosynthesis of alcH2 includes an additional diamine C-hydroxylation step. Knowledge of putH2 biosynthesis supported the use of precursor-directed biosynthesis to generate unsaturated putH2 analogues by culturing Shewanella putrefaciens in medium supplemented with unsaturated diamine substrates. The X-ray crystal structures of putH2 , avaH2 and alcH2 show differences in the relative orientations of the amide and hydroxamic acid functional groups that could prescribe differences in solvation and other biological properties. Functional differences have been borne out in biological studies. Although evolved for Fe(III) acquisition, solution coordination complexes have been characterised between putH2 and oxido-V(IV/V), Mo(VI), or Cr(V). Retrosynthetic analysis of 1:1 complexes of [Fe(put)]+ , [Fe(ava)]+ , and [Fe(bis)]+ that dominate at pH < 5 led to a forward metal-templated synthesis approach to generate the Fe(III)-loaded macrocycles, with apo-macrocycles furnished upon incubation with EDTA. This mini-review aims to capture the rich chemistry and chemical biology of these seemingly simple compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app