Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Restoration of T Cell function in multi-drug resistant bacterial sepsis after interleukin-7, anti-PD-L1, and OX-40 administration.

BACKGROUND: Multidrug resistant (MDR) bacterial pathogens are a serious problem of increasing importance facing the medical community. MDR bacteria typically infect the most immunologically vulnerable: patients in intensive care units, patients with extensive comorbidities, oncology patients, hemodialysis patients, and other immune suppressed individuals are likely to fall victim to these pathogens. One promising novel approach to treatment of MDR bacteria is immuno-adjuvant therapy to boost patient immunity. Success with this strategy would have the major benefit of providing protection against a number of MDR pathogens.

OBJECTIVES: This study had two main objectives. First, immunophenotyping of peripheral blood mononuclear cells from patients with sepsis associated with MDR bacteria was performed to examine for findings indicative of immunosuppression. Second, the ability of three immuno-adjuvants with distinct mechanisms of action to reverse CD4 and CD8 T cell dysfunction, a pathophysiological hallmark of sepsis, was evaluated.

RESULTS: Septic patients with MDR bacteria had increased expression of the inhibitory receptor PD-1 and its ligand PD-L1 and decreased monocyte HLA-DR expression compared to non-septic patients. All three immuno-adjuvants, IL-7, anti-PD-L1, and OX-40L, increased T cell production of IFN-γ in a subset of septic patients with MDR bacteria: IL-7 was most efficacious. There was a strong trend toward increased mortality in patients whose T cells failed to increase IFN-γ production in response to the three treatments.

CONCLUSION: Immuno-adjuvant therapy reversed T cell dysfunction, a key pathophysiological mechanism in septic patients with MDR bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app