Add like
Add dislike
Add to saved papers

DNA-templated nanoparticle complexes for photothermal imaging and labeling of cancer cells.

Nanoscale 2018 September 14
In situ monitoring of the photothermal (PT) effect at the cellular level is of great importance in the photothermal (PT) treatment of cancer. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) complexes (GQC) for PT sensing in solution and in cancer cells in vitro. Specifically, the QD photoluminescence (PL) could be activated at elevated temperature with a wide thermo-responsive range between 45 °C and 70 °C, which fits the temperature threshold for effective cancer cell ablation. The general applicability of GQC for intracellular PT sensing is explored using three types of PT agents (gold nanorods (GNRs), gold nanostars (GNSs), and Prussian blue nanoparticles (PBNPs)) with various PT performances. We show that the intracellular QD PL is gradually activated with increasing near-infrared (NIR) irradiation time, providing a good correlation with the surrounding medium temperature for PT sensing. Moreover, we demonstrate that the GQC sensor could be used for specific photothermal labeling and imaging of cancer cells. The QD PL signal is retained in the cells post-treatment, thereby potentially enabling persistent photothermal labeling of cancer cells for post-treatment cell tracking and imaging-guided therapy evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app