Add like
Add dislike
Add to saved papers

Comparison of Molecular Testing Modalities for Detection of ROS1 Rearrangements in a Cohort of Positive Patient Samples.

INTRODUCTION: ROS1 gene fusions are a well-characterized class of oncogenic driver found in approximately 1% to 2% of NSCLC patients. ROS1-directed therapy in these patients is more efficacious and is associated with fewer side effects compared to chemotherapy and is thus now considered standard-of-care for patients with advanced disease. Consequently, accurate detection of ROS1 rearrangements/fusions in clinical tumor samples is vital. In this study, we compared the performance of three common molecular testing approaches on a cohort of ROS1 rearrangement/fusion-positive patient samples.

METHODS: Twenty-three ROS1 rearrangement/fusion-positive clinical samples were assessed by at least two of the following molecular testing methodologies: break-apart fluorescence in situ hybridization, DNA-based hybrid capture library preparation followed by next-generation sequencing (NGS), and RNA-based anchored multiplex polymerase chain reaction library preparation followed by NGS.

RESULTS: None of the testing methodologies demonstrated 100% sensitivity in detection of ROS1 rearrangements/fusions. Fluorescence in situ hybridization results were negative in 2 of 20 tested samples, the DNA-based NGS assay was negative in 4 of 18 tested samples, and the RNA-based NGS assay was negative in 3 of 19 tested samples. For all three testing approaches, we identified assay characteristics that likely contributed to false-negative results. Additionally, we report that genomic breakpoints are an unreliable predictor of breakpoints at the transcript level, likely due to alternative splicing.

CONCLUSIONS: ROS1 rearrangement/fusion detection in the clinical setting is complex and all methodologies have inherent limitations of which users must be aware to correctly interpret results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app