Add like
Add dislike
Add to saved papers

Presynaptic GCaMP expression decreases vesicle release probability at the calyx of Held.

Synapse 2018 December
Synaptic vesicle (SV) exocytosis is intimately dependent on free local Ca2+ near active zones. Genetically encoded calcium indicators (GECIs) have become an indispensable tool to monitor calcium dynamics during physiological responses, and they are widely used as a proxy to monitor activity in neuronal ensembles and at synaptic terminals. However, GECIs' ability to bind Ca2+ at physiologically relevant concentration makes them strong candidates to affect calcium homeostasis and alter synaptic transmission by exogenously increasing Ca2+ buffering. In the present study, we show that genetically expressed GCaMP6m modulates SV release probability at the mouse calyx of Held synapse. GCaMP6m expression for approximately three weeks decreased initial SV release for both low-frequency stimulation and high-frequency stimulation trains, and slowed presynaptic short-term depression. However, GCaMP6m does not affect quantal events during spontaneous activity at this synapse. This study emphasizes the careful use of GECIs as monitors of neuronal activity and inspects the role of these transgenic indicators which may alter calcium-dependent physiological responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app