Add like
Add dislike
Add to saved papers

Kinematic algorithm to determine the energy cost of running with changes of direction.

Changes of direction (CoDs) have a high metabolic and mechanical impact in field and court team sports, but the estimation of the associated workload is still inaccurate. This study aims at validating an algorithm based on kinematic data to estimate the energy cost of running with frequent 180°-CoDs. Twenty-six physically active male subjects (22.4 ± 3.2 years) participated in two sessions: (1) maximum oxygen uptake (V̇O2,max ) and maximal aerobic speed (MAS) test; (2) 5-m continuous shuttle run (two 5-min trials at 50% and 75% MAS, 6-min recovery). In (2), full-body 3D-kinematics and V̇O2 were simultaneously recorded. Actual cost of shuttle running (Cmeas ) was obtained from the aerobic, anaerobic alactic and lactic components. The proposed algorithm detects "braking phases", periods of mostly negative (eccentric) work occurring at concurrent knee flexion and ground contact, and estimates energy cost (Cest ) considering negative mechanical work in braking phases, and positive elsewhere. At the speed of, respectively, 1.54 ± 0.17 and 1.90 ± 0.15 m s-1 (rate of perceived exertion: 9.1 ± 1.8 and 15.8 ± 1.9), Cmeas was 8.06 ± 0.49 and 9.04 ± 0.73 J kg-1  m-1 . Cest was more accurate than regression models found in literature (p < 0.01), and not significantly different from Cmeas (p > 0.05; average error: 8.3%, root-mean-square error: 0.86 J kg-1  m-1 ). The proposed algorithm improved existing techniques based on CoM kinematics, integrating data of ground contacts and joint angles that allowed to separate propulsive from braking phases. This work constitutes the basis to extend the model from the laboratory to the field, providing a reliable measure of training and matches workload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app