Add like
Add dislike
Add to saved papers

I-LAMM FOR SPARSE LEARNING: SIMULTANEOUS CONTROL OF ALGORITHMIC COMPLEXITY AND STATISTICAL ERROR.

We propose a computational framework named iterative local adaptive majorize-minimization (I-LAMM) to simultaneously control algorithmic complexity and statistical error when fitting high dimensional models. I-LAMM is a two-stage algorithmic implementation of the local linear approximation to a family of folded concave penalized quasi-likelihood. The first stage solves a convex program with a crude precision tolerance to obtain a coarse initial estimator, which is further refined in the second stage by iteratively solving a sequence of convex programs with smaller precision tolerances. Theoretically, we establish a phase transition: the first stage has a sublinear iteration complexity, while the second stage achieves an improved linear rate of convergence. Though this framework is completely algorithmic, it provides solutions with optimal statistical performances and controlled algorithmic complexity for a large family of nonconvex optimization problems. The iteration effects on statistical errors are clearly demonstrated via a contraction property. Our theory relies on a localized version of the sparse/restricted eigenvalue condition, which allows us to analyze a large family of loss and penalty functions and provide optimality guarantees under very weak assumptions (For example, I-LAMM requires much weaker minimal signal strength than other procedures). Thorough numerical results are provided to support the obtained theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app