Add like
Add dislike
Add to saved papers

Assessment of sigma-1 receptor occupancy in mice with non-radiolabelled FTC-146 as a tracer.

The use of liquid chromatography coupled with mass spectrometry (LC-MS/MS) is advantageous in in-vivo receptor occupancy assays at pre-clinical drug developmental stages. Relatively, its application is effective in terms of high throughput, data reproducibility, sensitivity, and sample processing. In this perspective, we have evaluated the use of FTC-146 as a non-radiolabelled tracer to determine the sigma-1 receptor occupancy of test drugs in mice brain. Further, the brain and plasma exposures of test drug were determined at their corresponding occupancies. In this occupancy method, the optimized tracer treatment (sacrification) time after intravenous administration was 30 min. The tracer dose was 3 µg/kg and specific brain regions of interest were frontal cortex, pons and midbrain. Mice were pretreated orally with SA4503, fluspidine, haloperidol, and donepezil followed by tracer treatment. Among the test drugs, SA4503 was used as positive control group at its highest test dose (7 mg/kg, intraperitoneal). There was a dose-dependent decrease in brain regional FTC-146 binding in pretreated mice. From the occupancy curves of SA4503, fluspidine, haloperidol, and donepezil the effective dose (ED50 ) value ranges are 0.74-1.45, 0.09-0.11, 0.11-0.12, and 0.07-0.09 mg/kg, respectively. Their corresponding brain effective concentration (EC50 ) values are 74.3-132.5, 3.4-3.7, 122.5-139.5, and 8.8-11.0 ng/g and plasma EC50 values are 34.3-53.7, 0.08-0.10, 7.8-9.5, and 0.6-0.7 ng/mL. Brain regional distribution and binding inhibition upon pretreatment were comparable with data reported with labeled [18 F]FTC-146. Drug exposures were simultaneously determined and correlated with sigma-1 occupancy from the same experiment. Wide category drugs can be assayed for sigma-1 receptor engagement and their correlation with exposures aid in clinical development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app