Add like
Add dislike
Add to saved papers

Novel Effective Connectivity Network Inference for MCI Identification.

Inferring effective brain connectivity network is a challenging task owing to perplexing noise effects, the curse of dimensionality, and inter-subject variability. However, most existing network inference methods are based on correlation analysis and consider the datum points individually, revealing limited information of the neuron interactions and ignoring the relations amongst the derivatives of the data. Hence, we proposed a novel ultra group-constrained sparse linear regression model for effective connectivity inference. This model utilizes not only the discrepancy between observed signals and the model prediction, but also the discrepancy between the associated weak derivatives of the observed and the model signals for a more accurate effective connectivity inference. What's more, a group constraint is applied to minimize the inter-subject variability and the proposed modeling was validated on a mild cognitive impairment dataset with superior results achieved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app