Add like
Add dislike
Add to saved papers

In Situ Observation of Carbon Nanotube Layer Growth on Microbolometers with Substrates at Ambient Temperature.

Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive in IR imaging devices. Since CNT growth occurs at elevated temperatures, integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally-isolated microbolometer membranes in a C2 H2 environment. During the process, CNTs were catalytically grown on the surface of a locally-heated membrane while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app