Add like
Add dislike
Add to saved papers

Neuroprotective effect of a standardized extract of Centella asiatica ECa233 in rotenone-induced parkinsonism rats.

Phytomedicine 2018 May 16
BACKGROUND: Mitochondrial dysfunction and reactive oxygen species (ROS) generation cause dopaminergic neurodegeneration in Parkinson's disease. The neuroprotective approach is a promising strategy to slow disease progression in Parkinson's disease. A standardized extract of Centella asiatica ECa233 has been previously reported to have pharmacological effects in the central nervous system.

PURPOSE: This study aimed to determine the neuroprotective effect and mechanisms of ECa233 in rotenone-induced parkinsonism rats.

METHODS: Rats were orally given either vehicle or ECa233 (10, 30 and 100 mg/kg) for 20 consecutive days. Rotenone (2.5 mg/kg i.p.) was given to parkinsonism (PD) and ECa-treated rats from day 15 to 20. Locomotor activity was recorded on day 1, 14, 17 and 20. Tyrosine-hydroxylase (TH) immunohistological staining was used to determine dopaminergic neurons in the substantia nigra and striatum. Furthermore, mitochondrial complex I activity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase protein expression were measured in brain tissue.

RESULTS: Rats receiving ECa233 30 mg/kg showed a significant increase in distances (p < 0.01) together with a higher number and intensity of dopaminergic neurons in the substantia nigra and striatum (p < 0.001) compared to PD rats. ECa233 (30 mg/kg) protected against mitochondrial complex I inhibition, decreased MDA levels (p < 0.05) and increased SOD (p < 0.01) and catalase (p < 0.05) expression.

CONCLUSION: ECa233 can protect against rotenone-induced motor deficits and dopaminergic neuronal death. These effects are mediated through the protection of mitochondrial complex I activity, the effects of antioxidants and the enhancement of antioxidant enzyme expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app