Add like
Add dislike
Add to saved papers

Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma.

BACKGROUND: Photodynamic therapy (PDT) has been determined to be a promising treatment modality in the most resistant tumors such as malignant melanoma. However, the key cytotoxic agent of PDT, -singlet oxygen (1 O2 ) - represents a high risk of photodynamic-associated side effects e.g. skin photosensitization. Recently, controllable photosensitization, where 1 O2 is produced on demand, has received increasing attention. In our study, this could be achieved via loading the photosensitizer (PS) in nanoparticles (NPs) decorated with target-specific moieties characterized by 1 O2 quenching abilities to specifically locate the PS in the targeted cells and assure that 1 O2 is only produced where desired after cellular processing.

METHODS: Polymeric and hybrid lipid-polymer NPs were formulated and assayed for their physicochemical properties. This was followed by conjugation with an active targeting ligand, cRGDyk, cyclic (Arginine-Glycine-Aspartic acid-D-Tyrosine-Lysine) peptide. Finally, photodynamic potential of the selected formulations was assayed by quantification of 1 O2 production and in vitro cytotoxicity.

RESULTS: Three formulations were selected and nominated to be formulations of choice (FOCs); FOC-1 (200 nm, polymeric), FOC-2 (130 nm, polymeric) and FOC-3 (200 nm, hybrid). Physicochemical properties, most importantly particle size and NPs' composition have shown to be the major determinants in targeted NPs' 1 O2 production and PDT-mediated cytotoxicity of melanoma.

CONCLUSION: Proper selection of formulations intended for PDT application and target-specific ligands could achieve dual targeting; enhanced accumulation of NPs and protection of 1 O2 production elsewhere other than target cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app