JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Muscarinic Antagonist Reduces Airway Inflammation and Bronchoconstriction Induced by Ambient Particulate Matter in a Mouse Model of Asthma.

Ambient particulate matter (PM) can increase airway inflammation and induce bronchoconstriction in asthma. This study aimed to investigate the effect of tiotropium bromide, a long-acting muscarinic antagonist, on airway inflammation and bronchoconstriction induced by ambient PM in a mouse model of asthma. We compared the effect of tiotropium bromide to that of fluticasone propionate and formoterol fumarate. BALB/c mice were sensitized to ovalbumin (OVA) via the airways and then administered tiotropium bromide, fluticasone propionate, or formoterol fumarate. Mice were also sensitized to ambient PM via intranasal instillation. Differential leukocyte counts and the concentrations of interferon (IFN)-γ, interleukin (IL)-5, IL-6, IL-13, and keratinocyte-derived chemokine (KC/CXCL1) were measured in bronchoalveolar lavage fluid (BALF). Diacron-reactive oxygen metabolites (dROMs) were measured in the serum. Airway resistance and airway inflammation were evaluated in lung tissue 24 h after the OVA challenge. Ambient PM markedly increased neutrophilic airway inflammation in mice with OVA-induced asthma. Tiotropium bromide improved bronchoconstriction, and reduced neutrophil numbers, decreased the concentrations of IL-5, IL-6, IL-13, and KC/CXCL1 in BALF. However, tiotropium bromide did not decrease the levels of dROMs increased by ambient PM. Though eosinophilic airway inflammation was reduced with fluticasone propionate, neutrophilic airway inflammation was unaffected. Bronchoconstriction was improved with formoterol fumarate, but not with fluticasone propionate. In conclusion, tiotropium bromide reduced bronchoconstriction, subsequently leading to reduced neutrophilic airway inflammation induced by ambient PM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app