Add like
Add dislike
Add to saved papers

The impact of environmental factors in birdsong acquisition using automated recorders.

The use of automatic acoustic recorders is becoming a principal method to survey birds in their natural habitats, as it is relatively noninvasive while still being informative. As with any other sound, birdsong degrades in amplitude, frequency, and temporal structure as it propagates to the recorder through the environment. Knowing how different birdsongs attenuate under different conditions is useful to, for example, develop protocols for deploying acoustic recorders and improve automated detection methods, an essential part of the research field that is becoming known as ecoacoustics. This article presents playback and recapture (record) experiments carried out under different environmental conditions using twenty bird calls from eleven New Zealand bird species in a native forest and an open area, answering five research questions: (1) How does birdsong attenuation differ between forest and open space? (2) What is the relationship between transmission height and birdsong attenuation? (3) How does frequency of birdsong impact the degradation of sound with distance? (4) Is birdsong attenuation different during the night compared to the day? and (5) what is the impact of wind on attenuation? Bird calls are complex sounds; therefore, we have chosen to use them rather than simple tones to ensure that this complexity is not missed in the analysis. The results demonstrate that birdsong transmission was significantly better in the forest than in the open site. During the night, the attenuation was at a minimum in both experimental sites. Transmission height affected the propagation of the songs of many species, particularly the flightless ones. The effect of wind was severe in the open site and attenuated lower frequencies. The reverberations due to reflective surfaces masked higher frequencies (8 kHz) in the forest even at moderate distances. The findings presented here can be applied to develop protocols for passive acoustic monitoring. Even though the attenuation can be generalized to frequency bands, the structure of the birdsong is also important. Selecting a reasonable sampling frequency avoids unnecessary data accumulation because higher frequencies attenuate more in the forest. Even at moderate distances, recorders capture significantly attenuated birdsong, and hence, automated analysis methods for field recordings need to be able to detect and recognize faint birdsong.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app