Add like
Add dislike
Add to saved papers

Several days of muscle hyperalgesia facilitates cortical somatosensory excitability.

Background and aims Maladaptive plasticity in neural circuits has been proposed in chronic musculoskeletal pain and has been discussed as a key component of the transition from acute to chronic pain. The induction of delayed onset muscle soreness (DOMS) in healthy individuals is one method that can be used to investigate the adaptations of neural circuits in response to several days of muscle hyperalgesia. The aim of this study was to determine the adaptations of the sensory cortex in response to muscle hyperalgesia induced by eccentric exercise of the wrist extensor muscles. It was hypothesized that muscle hyperalgesia would result in a facilitation of cortical somatosensory excitability, based on sensory evoked potentials evoked by electrical stimulation of the radial nerve. Methods Twelve healthy subjects performed eccentric exercise of the wrist extensors. Muscle soreness, pressure pain thresholds (PPTs) on the extensor carpi radialis (ECR) muscle, somatosensory evoked potentials (SEPs) based on 10 channel EEG recorded during electrical stimulation of the radial nerve were recorded before (Day0Pre), 2h (Day0Post), 2 days (Day2), and 6 days (Day6) after exercise. Results Compared to Day0Pre: (i) Muscle soreness increased at Day0Post and increased further at Day2 (both P < 0.05). (ii) Pressure pain thresholds decreased at Day2 (P < 0.05), (iii) the peak-to-peak N30-P45 and P45-N60 amplitude of the sensory evoked potential from the central-parietal recording sites were increased at Day2 (both P < 0.05); (iv) reduction in ECR PPTs was correlated with an increase of the post-central P45 wave. ConclusionsThese data demonstrate that hyperalgesia developing across several days is accompanied by an increase in sensory cortical excitability. In addition, sensory cortical adaptation followed a similar temporal profile to increased sensitivity to pressure (PPTs). This model may be relevant for further understanding neural adaptation in the transition from acute to chronic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app