Add like
Add dislike
Add to saved papers

Quantitation of zolpidem in biological fluids by electro-driven microextraction combined with HPLC-UV analysis.

In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability ( %RSD) between 0.3 % and 7.3 % ( n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app