Add like
Add dislike
Add to saved papers

Geometry of the left ventricular outflow tract assessed by 3D TEE in patients with aortic stenosis: impact of upper septal hypertrophy on measurements of Doppler-derived left ventricular stroke volume.

BACKGROUND: It is unclear how upper septal hypertrophy (USH) affects Doppler-derived left ventricular stroke volume (SV) in patients with AS. The aims of this study were to: (1) validate the accuracy of 3D transesophageal echocardiography (TEE) measurements of the left ventricular outflow tract (LVOT), (2) evaluate the differences in LVOT geometry between AS patients with and without USH, and (3) assess the impact of USH on measurement of SV.

METHODS: In protocol 1, both 3D TEE and multi-detector computed tomography were performed in 20 patients with AS [aortic valve area (AVA) ≤ 1.5 cm2 ]. Multiplanar reconstruction was used to measure the LVOT short and long diameters in four parts from the tip of the septum to the annulus. In protocol 2, the same 3D TEE measurements were performed in AS patients (AVA ≤ 1.5 cm2 , n = 129) and controls (n = 30). We also performed 2D and 3D transthoracic echocardiography in all patients.

RESULTS: In protocol 1, excellent correlations of LVOT parameters were found between the two modalities. In protocol 2, the USH group had smaller LVOT short and long diameters than the non-USH group. Although no differences in mean pressure gradient, or SV calculated with the 3D method existed between the two groups, the USH group had greater SV calculated with the Doppler method (73 ± 15 vs. 66 ± 15 ml) and aortic valve area (0.89 ± 0.26 vs. 0.73 ± 0.24 cm2 ) than the non-USH group.

CONCLUSIONS: 3D TEE can provide a precise assessment of the LVOT in AS. USH affects the LVOT geometry in patients with AS, which might lead to inaccurate assessments of disease severity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app