JOURNAL ARTICLE
OBSERVATIONAL STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Morphological changes and myocardial function assessed by traditional and novel echocardiographic methods in preadolescent athlete's heart.

Background Athlete's heart is a term used to describe the morphological and functional changes in the hearts of athletes. Recent studies suggest that these changes may occur even in preadolescent athletes. This study aims to improve our understanding of the changes occurring in the preadolescent athlete's heart. Design and methods Cardiac morphology and function in 76 preadolescent cross-country skiers (aged 12.1 ± 0.2 years) were compared with 25 age-matched non-competing preadolescents. Echocardiography was performed in all subjects, including 2D speckle-tracking strain echocardiography and 3D echocardiography. All participants underwent cardiopulmonary exercise testing to assess oxygen uptake and exercise capacity. Results Athletes had greater indexed VO2 max (62 ± 7 vs. 44 ± 5 mL/kg per min, p < 0.001), indexed left ventricular end-diastolic volume (79 ± 7 vs. 68 ± 7 mL/m2 , p < 0.001), left ventricular mass (69 ± 12 vs. 57 ± 13 g/m2 , p < 0.001), indexed right ventricular basal diameter (28.3 ± 3.0 vs. 25.4 ± 3.5 mm/m2 , p < 0.001) and right atrial area (10.6 ± 1.4 vs. 9.7 ± 1.2 cm2 /m2 , p < 0.01). There was no difference in left ventricular ejection fraction, global longitudinal strain, and global circumferential strain and right ventricular fractional area change between the groups. Controls had higher right ventricular global longitudinal strain (-28.1 ± 3.5 vs. -31.1 ± 3.3%, p < 0.01). VO2 max was highly correlated to left ventricular end-diastolic volume ( r = 0.76, p < 0.001). Conclusion Athletes had greater left ventricular mass and greater left and right ventricular chamber dimensions compared with controls, while left ventricular function did not differ. Interestingly, right ventricular deformation was significantly lower compared with controls. This supports the notion that there is physiological, adaptive remodelling in preadolescent athlete's heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app