Add like
Add dislike
Add to saved papers

Interplay between Copper, Neprilysin, and N-Truncation of β-Amyloid.

Sporadic Alzheimer's disease (AD) is associated with an inefficient clearance of the β-amyloid (Aβ) peptide from the central nervous system. The protein levels and activity of the Zn2+ -dependent endopeptidase neprilysin (NEP) inversely correlate with brain Aβ levels during aging and in AD. The present study considered the ability of Cu2+ ions to inhibit human recombinant NEP and the role for NEP in generating N-truncated Aβ fragments with high-affinity Cu2+ binding motifs that can prevent this inhibition. Divalent copper noncompetitively inhibited NEP ( Ki = 1.0 μM),  while proteolysis of Aβ yielded the soluble, Aβ4-9 fragment that can bind Cu2+ with femtomolar affinity at pH 7.4. This provides Aβ4-9 with the potential to act as a Cu2+ carrier and to mediate its own production by preventing NEP inhibition. Enzyme inhibition at high Zn2+ concentrations ( Ki = 20 μM) further suggests a mechanism for modulating NEP activity, Aβ4-9 production, and Cu2+ homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app