Add like
Add dislike
Add to saved papers

A CS1-NKG2D Bispecific Antibody Collectively Activates Cytolytic Immune Cells against Multiple Myeloma.

Multiple myeloma (MM) is an incurable hematologic malignancy of plasma cells, with an estimated 30,000 new cases diagnosed each year in the United States, signifying the need for new therapeutic approaches. We hypothesized that targeting MM using a bispecific antibody (biAb) to simultaneously engage both innate and adaptive cytolytic immune cells could present potent antitumor activity. We engineered a biAb by fusing an anti-CS1 single-chain variable fragment (scFv) and an anti-NKG2D scFv (CS1-NKG2D biAb). Although NKG2D is a potent activation receptor ubiquitously expressed on mostly cytolytic immune cells including NK cells, CD8+ T cells, γδ T cells, and NKT cells, the CS1 tumor-associated antigen on MM represents a promising target. CS1-NKG2D biAb engaged human MM cell lines and NKG2D+ immune cells, forming immune synapses. In effector cells, CS1-NKG2D biAb triggered the phosphorylation of AKT, a downstream protein kinase of the activated NKG2D-DAP10 complex. The EC50 values of CS1-NKG2D biAb for CS1high and for CS1low MM cell lines with effector PBMCs were 10-12 and 10-9 mol/L, respectively. CS1-NKG2D biAb acted through multiple types of immune cells, and this induced cytotoxicity was both CS1- and NKG2D-specific. In vivo , survival was significantly prolonged using CS1-NKG2D biAb in a xenograft NOD-SCIDIL2γc-/- (NSG) mouse model engrafted with both human PBMCs and MM cell lines. Collectively, we demonstrated that the CS1-NKG2D biAb facilitated an enhanced immune synapse between CS1+ MM cells and NKG2D+ cytolytic innate and antigen-specific effector cells, which, in turn, activated these immune cells for improved clearance of MM. Cancer Immunol Res; 6(7); 776-87. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app