JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The sarco(endo)plasmic reticulum calcium ATPase SCA-1 regulates the Caenorhabditis elegans nicotinic acetylcholine receptor ACR-16.

Cell Calcium 2018 June
Nicotinic acetylcholine receptors (nAChR) are present in many excitable tissues and are found both pre and post-synaptically. Through their non-specific cationic permeability, these nAChRs have excitatory roles in neurotransmission, neuromodulation, synaptic plasticity, and neuroprotection. Thus, nAChR mislocalization or functional deficits are associated with many neurological disease states. Therefore identifying the mechanisms that regulate nAChR expression and function will inform our understanding of normal as well as pathological physiological conditions and offer avenues for potential therapeutic advances. Taking advantage of the genetic tractability of the soil nematode Caenorhabditis elegans, a forward genetic screen was performed to isolate regulators of the vertebrate α7 nAChR homologue ACR-16. From this screen a novel regulator of the ACR-16 receptor was identified, the sarco(endo)plasmic reticulum calcium ATPase sca-1. The sca-1 mutant affects ACR-16 receptor level at the NMJ, receptor functionality, and synaptic transmission. Responses to pressure-ejected nicotine in sca-1 mutants are indistinguishable from wild type, which implies the ACR-16 receptors are mislocalized at the NMJ. Changes in cytosolic baseline calcium levels in sca-1 and other mutants indicates a calcium-driven regulation mechanism of the α7-like NAChR ACR-16.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app