Add like
Add dislike
Add to saved papers

Treatment of Diabetic Mice with a Combination of Ketogenic Diet and Aerobic Exercise via Modulations of PPARs Gene Programs.

Type 2 diabetes is a prevalent chronic disease arising as a serious public health problem worldwide. Diet intervention is considered to be a critical strategy in glycemic control of diabetic patients. Recently, the low-carbohydrate ketogenic diet is shown to be effective in glycemic control and weight loss. However, hepatic lipid accumulation could be observed in mice treated with ketogenic diet. On the other hand, exercise is a well-known approach for treating nonalcoholic fatty liver disease. We thus hypothesize that the combination of ketogenic diet and exercise could improve insulin sensitivity, while minimizing adverse effect of hepatic steatosis. In order to test this hypothesis, we established diabetic mice model with streptozotocin (STZ) and divided them into control group, ketogenic diet group, and ketogenic diet with aerobic exercise group. We found that after six weeks of intervention, mice treated with ketogenic diet and ketogenic diet combined with exercise both have lower body weights, HbAlc level, HOMA index, and improvements in insulin sensitivity, compared with diabetes group. In addition, mice in ketogenic diet intervention exhibited hepatic steatosis shown by serum and hepatic parameters, as well as histochemistry staining in the liver, which could be largely relieved by exercise. Furthermore, gene analysis revealed that ketogenic diet in combination with exercise reduced PPAR γ and lipid synthetic genes, as well as enhancing PPAR α and lipid β -oxidation gene program in the liver compared to those in ketogenic diet without exercise. Overall, the present study demonstrated that the combination of ketogenic diet and a moderate-intensity aerobic exercise intervention improved insulin sensitivity in diabetic mice, while avoiding hepatic steatosis, which provided a novel strategy in the combat of diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app