Add like
Add dislike
Add to saved papers

Region-specific deletions of the glutamate transporter GLT1 differentially affect nerve injury-induced neuropathic pain in mice.

Glia 2018 September
Glutamate is a major excitatory neurotransmitter and plays an important role in neuropathic pain, which is frequently caused by nerve damage. According to recent studies, nerve injury induces changes in glutamatergic transmission in the spinal cord and several supraspinal regions, including the periaqueductal gray (PAG). Among glutamate signaling components, accumulating evidence suggests that the glial glutamate transporter GLT1 plays a critical role in neuropathic pain. Indeed, GLT1 expression is reduced in the spinal cord but increased in the PAG after nerve injury, suggesting that the role of GLT1 in neuropathic pain may vary according to the brain region. In this study, we generated PAG-specific and spinal cord-specific GLT1 knockout mice. Nerve injury-induced neuropathic pain was enhanced in spinal cord-specific GLT1 knockout mice but alleviated in PAG-specific GLT1 knockout mice. Thus, nerve injury may enhance glutamatergic neurotransmission from primary sensory neurons to the post-synaptic dorsal horn following downregulation of GLT1 in the spinal cord and result in inadequate descending pain inhibition caused by GLT1 upregulation in the PAG, resulting in neuropathic pain. In addition, ceftriaxone upregulated GLT1 expression in the spinal cord, but not the PAG, of control mice and attenuated tactile hypersensitivity in nerve-injured control mice but not in nerve-injured spinal cord-specific GLT1 knockout mice. Based on these results, the anti-neuropathic pain effect of ceftriaxone is mediated by the upregulation of GLT1 expression in the spinal cord. Thus, selective upregulation of spinal GLT1 and/or downregulation of GLT1 in the PAG represents a potentially novel strategy for the treatment of neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app