Add like
Add dislike
Add to saved papers

Aluminum effects on photosynthesis, reactive oxygen species and methylglyoxal detoxification in two Citrus species differing in aluminum tolerance.

Tree Physiology 2018 October 2
Citrus are mainly grown in low pH soils with high active aluminum (Al). 'Xuegan' (Citrus sinensis (L.) Osbeck) and 'Shatian pummelo' (Citrus grandis (L.) Osbeck) seedlings were fertilized for 18 weeks with nutrient solution containing either 0 mM (control) or 1 mM (Al toxicity) AlCl3·6H2O. Aluminum induced decreases of biomass, leaf photosynthesis, relative water content and total soluble protein levels, and increases of methylglyoxal levels only occurred in C. grandis roots and leaves. Besides, the Al-induced decreases of pigments and alterations of chlorophyll a fluorescence transients and fluorescence parameters were greater in C. grandis leaves than those in C. sinensis leaves. Aluminum-treated C. grandis had higher stem and leaf Al levels and similar root Al levels relative to Al-treated C. sinensis, but lower Al distribution in roots and Al uptake per plant. Aluminum toxicity decreased nitrogen, phosphorus, potassium, calcium, magnesium and sulfur uptake per plant in C. grandis and C. sinensis seedlings, with the exception of Al-treated C. sinensis seedlings exhibiting increased sulfur uptake per plant and unaltered magnesium uptake per plant. Under Al-stress, macroelement uptake per plant was higher in C. sinensis than that in C. grandis. Aluminum toxicity decreased the ratios of reduced glutathione/(reduced + oxidized glutathione) and of ascorbate/(ascorbate + dehydroascorbate) only in C. grandis roots and leaves. The activities of most antioxidant enzymes, sulfur metabolism-related enzymes and glyoxalases and the levels of S-containing compounds were higher in Al-treated C. sinensis roots and leaves than those in Al-treated C. grandis ones. Thus, C. sinensis displayed higher Al tolerance than C. grandis did. The higher Al tolerance of C. sinensis might involve: (i) more Al accumulation in roots and less transport of Al from roots to shoots; (ii) efficient maintenance of nutrient homeostasis; and (iii) efficient maintenance of redox homeostasis via detoxification systems of reactive oxygen species and methylglyoxal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app